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Abstract: 1-Trimethylacetyl derivatives 9 and 10 of 3-(2-butenyl)indole 7 and
3-(3-methyl-2-butenyl)indole 8 were regioselectively cyclized at the 4-posi-

tion of indole nucleus.

In the biosynthesis of ergot alkaloids 3, a prenyl group is first intro-
duced at 4-position of tryptophan as shown in the scheme(l). Although many
attempts to introduce a such substituent at the position of indole nucleus hav
been studied for a long time, no successful method has been reported except a

few cases(2,3).

Biosynthesis of ergot alkaloids.
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In our studies on synthesis of indole alkaloids, we developed novel intra-
and intermolecular cyclizations of dehydrotryptophan derivatives at the 4-posi-
tion(3a~c). Furthermore, we succeeded in the facile synthesis of Uhle's
ketone by regioselective Friedel-Crafts cyclization of 3-(l-trimethylacetyl-
indo-3-yl)propionic acid(3d). In this paper, we describe another type of
AlCls-catalyzed regioselective cyclization of 5, 9 and 10.

As the starting materials, we chose an alcohol 5 and 3-allylindole deriva-
tives 9 and 10. An alcohol 5 was synthesized by reduction of ketone 4 (4) and
subsequent trimethylacetylation of 1-position with 1 eq. NaH/trimethylacetyl-
chloride in DMF in 70% overall yield(5). 1-Trimethylacetyl derivatives 9 and 10
were also prepared from 3-allylindole derivatives 7 and 8 (6) with NaH/tri-
methylacetylchloride in DMF in 76% and 82% yields, respectively(9,10).

AlCls-catalyzed cyclization of alcohol 5 in dichloroethane in the presence
of 5 eq. AICl; at 60T for 1 h gave our desired cyclization product 6a at 4-
position of indole nucleus in 17% yield(7). No cyclization product at 2-
position was obtained. Similarly, monomethyl- and dimethylallyl derivatives 9
and 10 were treated with AlCl; in dichloromethane at 25T to afford the corres-
ponding monomethyl- and dimethyl- cyclization products 6a and 6b. Cyclization
of 9 and 10 proceeded faster than that of alcohol 5.

Tricycles 6a and 6b were obtained in 15% and 70% yields, respectively, after

purification by silica gel column chromatography(7, 8). The structures of 6a
and 6b were determined by their 'H-NMR spectra. Hydrolysis of 6a and 6b with
IN-NaOH in MeOH afforded 5-methyl- and 5,5-dimethyl-3,4-dihydro(l1A)benz[ e, d]-
indole 1la and 11b in quant. yields, respectively(ll,12).

When we used less than 2 eq. of AICls: as catalyst, such cyclization products
were not produced and 3~5 eq. of AlCl: were suitable for the selective cycli-
zation at the 4-position. We assumed that nucleophilic pyrrole part (1, 2 and 3-
position) of 5, 9 and 10 was deactivated by formation of AlICls:-complex such as I
or 1, and relatively reactive 4-position attacked a cationic site on the side
chain at its 3’ -position to afford those products.

Further application of our novel cyclization at the 4-position of indole
nucleus to the biomimetic total synthesis of ergot alkaloids(3) and study of

reaction mechanism are now in progress.
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6a; mp 144-145T(sealed tube); MS m/z 255(M*), 156. 'H-NMR(CDCl;) 5§ 1.38(3H,
d, J=THz), 1.51(9H. s), 1.76(1H, m), 2.08(1H, m), 2.82(2H, m), 3.07(1H, m),
7.10(1H, br.d, J=8Hz), 7.29(1H, t, J=8Hz), 7.36(1H, br.s), 8.18(1H, br.d,
J=8Hz).

6b; mp 121-122T; MS m/z 269(M*), 170. 'H-NMR(CDCl,;) & 1.34(6H, s), 1.51(9H,
s), 1.84(2H, t, J=6Hz), 2.84(2H, t, J=6Hz), 7.17(1H, br.d, J=8Hz), 7.30(1H,
t, J=8Hz), 7.38(1H, br.s), 8.18(1H, br.d, J=8Hz).

9; oil; MS m/z 255(M*). 'H-NMR(CDCla) & 1.51(9H, s), 1.71(3H, m), 3.39(2H,
m), 5.66(2H, m), 7.21-7.39(2H, m), 7.47(1H, br.s), 7.52(1H, br.d, J=8Hz),
8.51(1H, br.d, J=8Hz).

10; oil; MS m/z 269(M*). 'H-NMR(CDCla) & 1.45(9H, s), 1.78(6H, m), 3.39(2H,
d, J=THz), 5.40(1H, m), 7.22-7.38(2H, m), 7.43(1H, br.s), 7.50(1H, br.d,
J=8Hz), 8.50(1H, br.d, J=8Hz).

11a; mp 63-64T; MS m/z 171(M*), 156. 'H-NMR(CDCli) § 1.40(3H, d, J=THz),
1.78(1H, m), 2.10(1H, m), 2.88(2H, m), 3.10(1H, m), 6.85(1H, m), 6.92(1H,
m), 7.14-7.17(2H, m), 7.83(1H, br.s).

11b; mp 130-131C(sealed tube); MS m/z 185(M*), 170. 'H-NMR(CDCls) 5§ 1.35
(6H, s), 1.86(2H, t, J=THz), 2.89(2H, t, J=THz), 6.86(1H, m), 6.99(1H, br.
t, J=8Hz), 7.16(2H, m), 7.84(1H, br.s).
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