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Abstract: 1-Trimethylacetyl derivatives 9 and 10 of 3-(2-butenyl)indole 7 and 

3-(3-methyl-2-butenyl)indole 8 were regioselectively cyclized at the 4-posi-

tion of indole nucleus. 

In the biosynthesis of ergot alkaloids 3, a prenyl group is first intro-

duced at 4-position of tryptophan as shown in the scheme(l). Although many 

attempts to introduce a such substituent at the position of indole nucleus have 

been studied for a long time, no successful method has been reported except a 

few cases(2,3). 

Biosynthesis of ergot alkaloids. 

L - Tryptophan ( ! ) Ergot alkaloids ( 3 ) 
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In our studies on synthesis of indole alkaloids, we developed novel intra-

and intermolecular cyclizations of dehydrotryptophan derivatives at the 4-posi-

tion(3a~c). Furthermore, we succeeded in the facile synthesis of Uhle' s 

ketone by regioselective Friedel-Crafts cyclization of 3-(l-trimethylacetyl-

indo-3-yl)propionic acid(3d). In this paper, we describe another type of 

AlCl3-catalyzed regioselective cyclization of 5, 9 and 10. 

As the starting materials, we chose an alcohol 5 and 3-allylindole deriva-

tives 9 and 10. An alcohol 5 was synthesized by reduction of ketone 4 (4) and 

subsequent trimethylacetylation of 1-position with 1 eq. NaH/trimethylacetyl-

chloride in DMF in 70% overall yield(5). 1-Trimethylacetyl derivatives 9 and 10 

were also prepared from 3-allylindole derivatives 7 and 8 (6) with NaH/tri-

methylacetylchloride in DMF in 76% and 82% yields, respectively(9,10). 

AlCl3-catalyzed cyclization of alcohol 5 in dichloroethane in the presence 

of 5 eq. AlClä at 60E for 1 h gave our desired cyclization product Μ at 4-

position of indole nucleus in 173! yield(7). No cyclization product at 2-

position was obtained. Similarly, monomethyl- and dimethylallyl derivatives 9 

and 10 were treated with A1C13 in dichloromethane at 25T! to afford the corres-

ponding monomethyl- and dimethyl- cyclization products 6a and 6b. Cyclization 

of 9 and 10 proceeded faster than that of alcohol 5. 

Tricycles 6a and 6b were obtained in 15% and 70% yields, respectively, after 

purification by silica gel column chromatography(7, 8). The structures of 6a 

and 6b were determined by their 'H-NMR spectra. Hydrolysis of 6a and 6b with 

lN-Na0H in MeOH afforded 5-methyl- and 5,5-dimethyl-3, 4-di hydro (l$benz[c, d\-

indole 11a and 1Tb in quant, yields, respectively(ll, 12). 

When we used less than 2 eq. of A1C13 as catalyst, such cyclization products 

were not produced and 3~5 eq. of A1C13 were suitable for the selective cycli-

zation at the 4-position. We assumed that nucleophilic pyrrole part (1, 2 and 3-

position) of 5, 9 and 10 was deactivated by formation of AlCl3-complex such as 1 

or I, and relatively reactive 4-position attacked a cationic site on the side 

chain at its 3' -position to afford those products. 

Further application of our novel cyclization at the 4-position of indole 

nucleus to the biomimetic total synthesis of ergot alkaloids(3) and study of 

reaction mechanism are now in progress. 
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Ν (CH3)3CCOCI 

7 R·) s CH3 , R2 — Η 

8 R-| — R2 — OH3 
9 R-| = CH3 , R2 — Η 
10 R1 = R2 = CH3 

6 a Rn = CH3 , R2 = Η 
6 b R, = R2 = CH3 

NaOH 

11 a R1 = CH3 , R2 = Η 
11 b R-, = R2 = CH3 

or 

C l a S - O ^ f ^ 

I I 

AICI3 complex of 9 and 10 
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